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1 Introduction

The difficulty and cost of providing rich and reliable textual annotations
for images in large databases, as well as the “linguistic gap” associated to
these annotations, explains why the retrieval of images based directly on
their visual content (content-based image retrieval, CBIR) is of high interest
today [16].

In the early years of research in CBIR, the focus was on query by visual
example (QBVE): a search session begins by presenting an example image (or
sketch) to the search engine as a visual query, then the engine returns images
that are visually similar to the query image. More recently, the concept of
semantic gap has been extensively used in the CBIR research community to
express the discrepancy between the low-level features that can be readily
extracted from the images and the descriptions that are meaningful for the
users.

The automatic association of such descriptions to the low-level features
is currently only feasible for very restricted domains and applications. When
searching more generic image databases, one way of identifying what the
user is looking for in the current retrieval session (the target of the user) is
by including the user in the retrieval loop. For this, the session is divided
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into several consecutive rounds; at every round the user provides feedback
regarding the retrieval results, e.g. by qualifying images returned as either
“relevant” or “irrelevant” (relevance feedback or RF in the following); from
this feedback, the engine learns the visual features of the images and returns
improved results to the user. The RF mechanism implemented in a search
engine should attempt to minimize the amount of interaction between the
user and the engine required for reaching good results.

For other types of content, such as text or music, one can also find a
gap between automatically extracted descriptions of content and meaningful
retrieval criteria. In fact, RF was first introduced for the retrieval of text
documents in [36] and [34]. The ease with which the relevance of an image
can be evaluated and the persistent difficulty of dealing with the semantic
gap in CBIR explains the rapid development of RF for image retrieval since
the early work in [25], [30], [39], [35], [22] or [29].

We should note here that the semantic gap is not the unique explanation
for the difficulties encountered in retrieval by content: the “numerical gap”,
or the use of incomplete or confusing descriptions of the multimedia content,
is an important complementary cause of problems in retrieval. To reduce
this numerical gap, one should first attempt to find descriptors that are both
rich and faithful.

In the following, we present the main issues related to relevance feedback
for image retrieval and we review recent developments in this domain. We
then mention a few promising research directions for the near future.

2 Objectives and formulation of the problem

Knowledge of the objectives of retrieval and of the characteristics of the data
is important both for defining adequate RF mechanisms and for choosing
appropriate evaluation methods for these mechanisms.

The first and most frequent objective consists in finding images that share
some specific characteristic the user has in mind. The case of target search
studied in [11] and [10], where the user is looking for that particular single
image she has in mind, was further distinguished from the more common
category search.

A complementary but less frequent use of RF was introduced in [27], [44]
and consists in defining a class of images and extending textual annotations
of some images in the class to the others.
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2.1 Search for images sharing some characteristics

It is worth noting that this objective can be encountered in various scenarios,
corresponding to different expectations of the user, such as:

• Explore and search for some “relevant” items. In this case, the user has
a rather vague prior notion of relevance and relies on the exploration of
the image base to clarify it. The search engine must allow for a rather
unfocused exploration, but it doesn’t need to find all the “relevant”
images, nor to exclude all the “irrelevant” images, since the user will
just pick some “relevant” ones in the end.

• Retrieve most items in a set of “relevant” ones. In this case, the user
would like to find all or most of the images that share some specific
characteristic she has in mind. The exploratory behaviour is more
focused here, but again the search engine doesn’t need to exclude all
the “irrelevant” images, since the user will ignore the few that may
remain in the end.

Relevance is usually defined by a characteristic that is shared by some
images. It can be a perceptual characteristic or a more semantic one, and it
may concern entire images or parts of images.

This objective is usually considered to correspond to a ranking problem,
where the images must be ordered and returned to the user by decreasing
relevance. However, it is generally accepted that a precise ranking of the “rel-
evant” or of the “irrelevant” images is not required, partly because the user
may be unable to choose between two alternative rankings. The search en-
gine should simply rank most of the “relevant” images before the “irrelevant”
ones.

Setting up a frontier between “relevant” and “irrelevant” images is not
important here, so this is not a classification problem. Estimating a density
function for the “relevant” images is not necessary either, since we are only
interested in the high density regions of the image description space (an
estimation of the density would also be unreliable with the few examples
that we can expect). We can also consider that the search for images sharing
some characteristics is a problem of identifying the modes of a distribution.

To evaluate the performance of an RF mechanism attempting to solve
such a retrieval problem, it is necessary to measure the quality of the ranking
of “relevant” images before the “irrelevant” ones and the speed of improve-
ment of this ranking during successive feedback rounds.
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2.2 Discrimination of a class of images

The extension of textual annotations of some images to the others in a same
class should help reducing the number of images that have to be manually
annotated. For this procedure to be efficient, the effort required for defining
the class corresponding to the annotation should be much lower than the
effort for a manual annotation. This is why it was suggested in [27], [44]
to use RF to interactively define the class of images corresponding to an
annotation. This is clearly a classification problem: the frontier between the
images belonging to the target class (the “relevant” images in this case) and
the others (the “irrelevant” images) must be reliably identified. A ranking
of the “relevant” and “irrelevant” images is not sufficient for obtaining such
a classification.

The rate of false positives (images that do not belong to the class but are
assigned to it and, consequently, receive a wrong annotation) is considered
to be more important than the rate of false negatives (images that belong
to the class but are not assigned to it and do not receive the annotation).
However, the frontier need not always be crisp and degrees of confidence can
be associated to the resulting annotation.

For this objective, it is the classification performance of RF that must
be evaluated: one should measure the classification error (or only the rate
of false positives) and the speed of reduction of this error during successive
feedback rounds.

2.3 Image representation

The representation of individual images also has an impact on the RF mech-
anism employed. In existing work on the CBIR with RF, two different rep-
resentation schemes were used for the images:

• Most of the time, the global visual appearance of the images is described
using a combination of global signatures including colour, texture and
shape information. Images are then represented by fixed-length vectors
in a description space.

• In some publications, such as [33], [20], [23] or [24], an image is con-
sidered to be a set (or a “bag”) of regions obtained by an automatic
segmentation. Every region can be described by colour, texture and
shape. Additionally, some information regarding the configuration of
the regions can be available. An image is then represented as variable-
length collection of region signatures, possibly including configuration
information. From user feedback concerning entire images, the search
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engine is also expected to learn (in a variant of multiple instance learn-
ing) which regions are important for the current search session and
which regions to ignore. However, the difficulty of this problem would
be significantly reduced if the user could select and provide feedback
for individual regions.

2.4 General assumptions

One can customize an RF mechanism if one knows the characteristics of
the scenario, of the target application and of its users. It is nevertheless
important to remind some general assumptions that are usually made when
developing RF mechanisms for CBIR:

1. The discrimination between “relevant” and “irrelevant” images must
be possible with the available image descriptors.

2. There is some relatively simple relation between the topology of the
description space and the characteristic shared by the images the user
is searching for.

3. “Relevant” images are a small part of the entire image database.

4. While part of the early work on RF assumed that the user could (and
would be willing to) provide a rather rich feedback, including “relevance
notes” for many images, the current assumption is that this feedback
information is scarce: the user will only mark a few “relevant” images
as positive and some very different images as negative.

2.5 Sources and nature of the available information

Given the rather small amount of interaction with the user during an RF
session, it is important to use all the available information to improve the
retrieval results. In Tab. 1 we show what sources of information one can try
to exploit. Few existing publications address this important issue (see e.g.
[3] and [15]).

3 Relevance feedback mechanisms

To preserve interactivity, the RF mechanism implemented in a search engine
must operate in real time. It is expected to maximize the ratio between the
quality of the retrieval results and the amount of interaction between the
user and the system.
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Table 1: Sources and nature of the information that can be exploited in
relevance feedback

Source Time period

other sessions current session current round

prior
domain-specific simi-
larity, prior clustering

nature and context
of session

-

other users
retrieval-based correla-
tions

- -

User
model of subjective
perceived similarity

answers in previous
rounds

answer in cur-
rent round

An RF mechanism has two components: a learner and a selector. At every
feedback round, the user marks (part of) the images returned by the search
engine as “relevant” or “irrelevant”. The learner exploits this information
to re-estimate the target of the user. With the current estimation of the
target, the selector chooses other images that are displayed by the interface
of the search engine; the user is asked to provide feedback on these images
during the next round. In the following, we briefly present the evolution of
the learners and of the selection criteria in the recent years.

3.1 Learners

In RF, the learner must use the training data, i.e. the images marked by
the user during subsequent feedback rounds, and sometimes prior knowledge
(see Tab. 1) in order to estimate the target of the user.

3.1.1 Difficulty of learning in relevance feedback

The task of the learner is particularly difficult in the context of RF for several
reasons (see also [6], [47]):

• The amount of training data is very low, usually much lower than the
number of dimensions of the description space.

• There are usually much fewer positive examples (images marked by the
user as “relevant”) than negative examples (images marked as “rele-
vant”). The learner must have a low sensitivity to this imbalance in
the training set or some corrective must be found.
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• The target class may have a rather complex shape or even several,
rather disconnected modes. Together with the fact that training data
is scarce, this can severely limit the generalization we can expect.

• To preserve interactivity, both learning from the training examples and
the evaluation of the remaining images according to the selection cri-
terion must be very fast. The computation cost can then be a very
important criterion in the choice of a learning method.

3.1.2 Evolution of learners for relevance feedback

Early approaches to RF for CBIR are still close to the classical query by
visual example (QBVE) framework: they assume the existence of an ideal
query point that, if found, would provide the appropriate answer to the
user when used for QBVE. These approaches belong to the family of “query
point movement” (QPM) methods, for which the task of the learner consists
in finding, at every round, a better query point together with a re-weighting
of the individual dimensions of the description space. Learning can rely on
the positive examples alone, such as for the re-weighting scheme in [39] or
the Mahalanobis distance-based proposal in [22], or on both positive and
negative examples, such as the methods put forward in [35], [29] or [32].

All these methods make the strong assumption that the target class has
an elliptical shape, but some go even further by considering that the axes
of the ellipsoid are the original axes of the description space (i.e. that the
covariance matrix of the target class is diagonal). Learning corresponds here
to the estimation of the parameters of a Gaussian distribution.

To our knowledge, these strong assumptions regarding the shape of the
target class were first removed in [28] and [31]. The query expansion scheme
put forward in [31] consists in performing an online clustering of the examples
and evaluating all the other images using a nearest-neighbour decision with
respect to these clusters. In [28] the density of the positive examples and
the density of the negative examples are estimated with a Parzen window
method; the decision function used for ranking the images returned to the
user is the difference between the two densities (the first minus the second).
The additiveness of this density estimation method makes it incremental, i.e.
at every feedback round a fixed number of terms is added to the decision
function; this is very important for the cost-effectiveness of the algorithm.

Recent work on RF often relies on support vector machines (SVM, [42],
[38]). With SVMs, the data is usually first mapped to a higher-dimensional
feature space using a non-linear transform associated to a reproducing kernel;
linear discrimination between classes is then performed in this feature space;
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the frontier only takes into account the support vectors, which are (loosely
speaking) those examples that are closest to the frontier. Learning is based
on constrained quadratic optimisation. The reader should refer to e.g. [38]
for a detailed presentation of SVMs and other kernel methods.

In RF, SVMs appear to be the learners of choice for several reasons:

• The decision function of an SVM allows both the definition of a frontier
and the ranking of images.

• For most choices of the kernel, SVMs avoid too restrictive assumptions
regarding the data (e.g. the shape of the target class).

• SVMs are very flexible. For example, prior knowledge regarding the
problem can be used to tune the kernel.

• SVMs allow fast learning (with the rather limited number of examples
provided by feedback) and relatively fast evaluation for medium-sized
databases.

• By relying only on support vectors, SVMs are usually less sensitive than
density-based learners to the imbalance between positive and negative
examples in the training data.

It should be noted, however, that SVMs lack (in their original formula-
tion) the incremental character and the corresponding cost-effectiveness of
Parzen density estimation.

While most of the existing work using SVMs for RF concentrates on 2-
class SVMs (see [21], [46], [40], [23] or [24] to mention only a few) that must
learn to discriminate positive and negative examples, 1-class SVMs were also
put forward in [8] in order to learn from positive examples only. 1-class SVMs
are able to estimate the support of the distribution of positive examples
(images marked by the user as “relevant”). Beside this ability to use only
positive examples, another (rather implicit) argument in favour of 1-class
SVMs (see [8]) is that 2-class SVMs tend to overestimate the target class.
However, by completely ignoring the negative examples when they exist, in
many cases 1-class SVMs cannot avoid including in the images returned to
the user many “irrelevant” images.

Another kernel method was suggested in [45] and [46] as a learner for
RF: kernel biased discriminant analysis (kernel BDA). Linear BDA identifies
the dimensions of the description space according to their effectiveness in
discriminating between positive and the other examples. Kernel BDA does
the same, but in the feature space associated to the kernel rather than in
the original description space. In [46] kernel BDA is found to produce better
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results than both 2-class SVMs and kernel Fisher discriminant analysis (see
[38]). However, since kernel BDA is a “mass”-based method (like standard
discriminant analysis), we expect it to be sensitive to the imbalance between
positive and negative examples, and to encounter difficulties when very few
examples are available.

Various kernels were used for the SVM classifiers in RF. The linear kernel,
K(xi, xj) = xixj, can only be used when a linear discrimination between
classes can be expected in the original description space, which is generally
not the case for image signatures.

A well-known and often employed kernel is the Gaussian (or Radial Basis
Function) kernel, K(xi, xj) = exp (−γ‖xi − xj‖

2). However, this kernel is
highly sensitive to the scale parameter γ (the inverse of the variance of the
Gaussian).

The use of the Laplace (exponential) kernel, K(xi, xj) = exp (−γ‖xi − xj‖),
was advocated in [7] for histogram-based image descriptors. In [24], this ker-
nel was also found to provide better results than the Gaussian kernel in CBIR
with RF.

The hyperbolic kernel, K(xi, xj) = 1/ (ε + γ‖xi − xj‖), can be computed
fast and was recently evaluated for RF with rather good results [13]. The
scale parameter is again γ (ε translates into a multiplicative constant plus a
change in γ and is only used to avoid numerical problems).

All the kernels we mentioned up to now are positive definite kernels.
The triangular kernel, K(xi, xj) = −‖xi − xj‖, was introduced in [4] as a
conditionally positive definite kernel, but the convergence of SVMs remains
guaranteed with this kernel [37]. In [14] the triangular kernel was shown
to have a very interesting property: it makes the frontier found by SVMs
invariant to the scale of the data (within the limits set by the value of the C

bound, but even these limits are less strong for the triangular kernel than for
the Gaussian kernel). Note that the use of a multiplicative parameter for the
triangular kernel (e.g. K(xi, xj) = −γ‖xi − xj‖) has no effect on the SVM.

By the study of several groundtruth databases, it was found in [13] that
the size of the various classes often covers an important range of different
scales; yet more significant changes in scale are expected to occur from one
user-defined class to another within a large database in real-life RF applica-
tions. A too strong sensitivity of the learner to the scale of the data could
then seriously limit its applicability in an RF context. For SVM classifiers,
sensitivity to scale has two sources: the scale parameter of the kernel and
the C bound on the α coefficients. We focus here on the first source of sen-
sitivity, the second one being usually less constraining (the C bound can be
set in our retrieval context to some high value without significantly affecting
performance).
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The comparison performed in [13] shows that the triangular kernel out-
performs the other kernels we mentioned, with the Gaussian kernel producing
the lowest performance. Indeed, since the classes present in a database often
have significantly different scales, any value for the scale parameter will be
inadequate for many classes, so the results obtained with this kernel cannot
be very good. Comparatively, the use of the Laplace kernel reduces the sen-
sitivity of the SVM to scale. With the Laplace and hyperbolic kernels, an
increase of γ beyond 1 has some impact on the results (this impact is stronger
for the Laplace kernel), while a reduction of γ does not have significant con-
sequences. This is easily explained by the fact that for small γ the Laplace
and hyperbolic kernel become similar to the triangular kernel. Since in real
applications the scales of the user-defined classes cannot be known a priori
and the scale parameter of a kernel cannot be adjusted online, the scale-
invariance obtained by the use of the triangular kernel is a highly desirable
feature

We must note that the norm ‖xi − xj‖ used when computing the kernel
has an impact on the results: the L1 norm outperforms the L2 norm. It was
found in [6] that the use of the perceptual dissimilarity function defined in [26]
instead of ‖xi − xj‖ improves retrieval results. This perceptual dissimilarity,
which is not a metric, can be obtained in the following way: to find the
dissimilarity between two vectors, only the n dimensions corresponding to
the smallest absolute differences are retained (n is fixed for a database and
identified by trial and error). This perceptual “distance” was justified using
psychological considerations and was experimentally found in [26] to work
better than L1, L2 and Lp with 0 < p < 1 (this fractional measure, put
forward in [1], is not a metric either).

When images are represented as variable-length collections of region sig-
natures, [24] suggests the use of the Earth Mover’s Distance (EMD) instead
of ‖xi−xj‖ when computing the Gaussian kernel. Unfortunately, the compu-
tation cost is high for the EMD and the resulting kernel does not necessarily
satisfy the conditions that guarantee convergence of the SVM. While this
new kernel is found to work better than the standard Gaussian kernel and
the Laplace kernel, the comparison is biased by the fact that the image rep-
resentation is finer when the variable-length representation (only exploitable
with the new kernel) is employed.

3.2 Selection criteria

In much of the work on RF, the images for which the user is asked to provide
feedback at the next round are simply those that are currently considered
by the learner as potentially the most “relevant”; also, in a few cases these
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images were randomly selected. It is important to understand the goals of
the selection criterion and how it can be improved.

3.2.1 Goals of the selector

An RF session is open-ended, since the user is supposed to be able to provide
feedback any time during the session. It is then difficult to define two distinct
stages in the session: the identification of the target class, followed by the
presentation of its images to the user. As a consequence, the selection strat-
egy has two different and potentially conflicting goals during each feedback
round:

1. Given the current state of knowledge of the learner, provide the user
with as many “relevant” images as possible.

2. Elicit from the user as much information as possible regarding the dis-
tinction between “relevant” and “irrelevant” (maximize the transfer of
information from the user to the system).

3.2.2 Select the “most positive” images

The “return the most positive images” criterion (MP in the following) selects
those images that are currently considered by the learner as the most “rele-
vant”. This strategy is the most frequently found in the literature on RF and
focuses on the first goal just mentioned. It has the advantage that the user
gets quite early many items from (or close to) the target class, and conse-
quently some satisfaction, but the disadvantage that a more or less complete
identification of the target class may take longer.

3.2.3 Select the “most informative” images

A “return the most informative images” criterion (MI in the following) fo-
cuses on the second goal mentioned above. Valuable ideas were introduced in
[11] and [10], where the problem under focus is target search; at every round,
the user is required to choose, between the two images presented by the en-
gine, the one that is closest to the single target image. The selection criterion
put forward in this case attempts to identify at every round the most infor-
mative binary selections, i.e. those that are expected to remove a maximal
amount of uncertainty regarding the target. This criterion translates into two
complementary conditions for the images in the selection: each image must
be ambiguous given the current estimation of the target and the redundancy
between the different images has to be low. The entropic criterion employed
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in [11], [10] does not scale well to category search or to the selection of more
than 2 images. Computational optimisations must be found, relying on the
use of specific learners and, possibly, specific search contexts.

Based on the definition of active learning (see [2], [9]), the selection of
examples for training SVMs to perform general classification tasks is stud-
ied in [5]. When the classification error increases with the distance between
the misclassified examples and the frontier (a “soft margin” is used for the
SVM), the authors interestingly distinguish two cases: early and late stages
of learning. In the early stages, the classification of new examples is likely
to be wrong, so the fastest reduction in generalization error can be achieved
by selecting the example that is farthest from the current estimation of the
frontier. During late stages of learning, the classification of new examples is
likely to be right but the margin may be sub-optimal, so the fastest reduc-
tion in error can be achieved by selecting the example that is closest to the
current estimation of the frontier. Following to the classical formulation of
active learning, the authors only consider the selection of single examples for
labelling (for addition to the training set) at every round.

For SVM learners too, several selection criteria are presented in [41] and
applied to the classification of texts. The simplest (and computationally
cheapest) of these criteria consists in selecting the texts whose representa-
tions (in the feature space induced by the kernel) are closest to the hyperplane
currently defined by the SVM. We shall call this simple criterion the selec-
tion of the “most ambiguous” (MA) candidate(s). This selection criterion
is justified in [41] by the fact that knowledge of the label of such a candi-
date halves the version-space. In this case, the version space is the set of
parameters of the hyperplanes in feature space that are compatible with the
already labelled examples. The proof of this result assumes that the version
space is not empty and that, in the feature space associated to the kernel,
all the images of vectors in the input space have constant norm. In order to
minimize the number of learning rounds, the user is asked to label several
examples at every round and these examples are all selected according to the
MA criterion. In [40] the MA selection criterion is applied to CBIR with
relevance feedback and shown to produce a faster identification of the target
images than the selection of random images for labelling.

Note that the MA criterion in [41], [40] is the same as the one put forward
in [5] for the late stages of learning. This clarifies the fact that the MA
criterion relies on two important further assumptions: first, the prior on the
version space is rather uniform; second, the solution found by the SVM is
close to the center of gravity of the version space. The second assumption can
be relieved by using Bayes Point Machines [19] instead of SVMs or the more
sophisticated criteria put forward in [41], albeit at a higher computational
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cost.
However, in the early stages of an RF session the frontier will usually

be very unreliable and, depending on the initialization of the search and the
characteristics of the classes, may be much larger than the target class (there
are much fewer examples than dimensions in the description space). It follows
that the first assumption may not hold in the early stages of learning. In
such cases, selecting those unlabeled examples that are currently considered
by the learner as (potentially) the most relevant may sometimes produce a
faster convergence of part of the frontier during the first few rounds of RF.

While the MA criterion provides a computationally effective solution to
the selection of the most ambiguous images (satisfying the first condition
mentioned above), when used for the selection of more than one candidate
image it does not remove the redundancies between the candidates (it does
not satisfy the second condition).

It was recently suggested in [13] to translate this condition of low re-
dundancy into the following additional condition: if xi and xj are the input
space representations of two candidate images, then require a low value for
K(xi, xj) (i.e. of the value taken by the kernel for this pair of images). If
the kernel K is inducing a Hilbert structure on the feature space, if φ(xi),
φ(xj) are the images of xi, xj in this feature space and if all the images of
vectors in the input space have constant norm, then this additional condi-
tion corresponds to a requirement of (quasi-)orthogonality between φ(xi) and
φ(xj) (since K(xi, xj) = 〈φ(xi), φ(xj)〉). This selection criterion was called
“most ambiguous and orthogonal” (MAO) and is considered to be a better
approximation to MI.

The MAO criterion has a simple intuitive explanation for kernels K(xi, xj)
that decrease with an increase of the distance d(xi, xj) (which is the case for
most common kernels): it encourages the selection of unlabeled examples
that are far from each other in input space, allowing to better explore the
current frontier.

Since the triangular kernel is not positive definite but only conditionally
positive definite, the account provided in [41] for the MA selection criterion
does not hold for this kernel. However, since the value of K(xi, xj) decreases
with an increase of the distance d(xi, xj), the justification for the MAO cri-
terion in [13] does hold, as well as the justification of the MA criterion in
[5].

3.2.4 Hybrid selection strategies

Since MP and MI focus each on a single goal, a hybrid selection strategy
may be able to find a good compromise. The hybrid strategy suggested
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in [43] for text retrieval consists in using the MP criterion for k texts and
the MA criterion for the remaining n − k texts that are selected at every
feedback round. Also, k increases over time during the interactive retrieval
session: more ambiguous examples are presented in the beginning, to identify
the target class faster, while later the ratio of (potentially) “relevant” texts
increases. For the databases considered in [43], this hybrid strategy compares
well to the use of the MP or MA selection criteria. Further comparisons
should be performed to compare the superiority of this strategy and to find
how to choose the parameters of the transition from more MA to more MP.

3.3 Structure of the session

The initialisation of search with RF is a very important issue. A good start-
ing point can be provided by the user (example image), found with the help of
visual summaries, or identified by the logical composition of categories from
a visual thesaurus [12]. If such a good starting point is not available, then
feedback must be used both for finding some “relevant” image starting from
a random initial sample (exploratory stage) and then for retrieving further
“relevant” images (“exploitation” stage). An exploratory behaviour must
also be supported because some target classes have several distinct modes.
Note that in such cases the significance of feedback changes during the ses-
sion: in exploratory stages the user will mark as positive images that have
some similarity with target images but cannot be considered as “relevant”,
while in exploitation stages she is expected to mark as positive only “rele-
vant” images. While the exploratory behaviour was addressed in early work
on QPM methods, most recent work focuses on the exploitation stage.

4 Evaluation of search with relevance feed-

back

4.1 How to evaluate

Evaluating relatively general improvements to RF mechanisms by experi-
menting with users is very difficult to set up, since it would require the
cooperation of many different groups of users in various contexts.

The common alternative is to use image databases for which a ground
truth is available; this ground truth usually corresponds to the definition of
a set of mutually exclusive image classes, covering the entire database. Of
course, for a groundtruth database a user would often find many other classes
that overlap those of the ground truth, so the evaluation of a retrieval method
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on such a database cannot be considered exhaustive even with respect to the
content of that single database. To cover a wide range of contexts, it is very
important to use several groundtruth databases and to have characteristics
that differ not only among these databases, but also among the classes of
each database. Note that by finding correlations between the results of the
RF methods and the characteristics of some classes or databases, one can
identify ways for adapting RF to a specific context.

Relevance feedback methods must help reducing the semantic gap. It
may then be important for evaluating RF to avoid having in the groundtruth
databases too many “trivial” classes, i.e. for which simple low-level visual
similarity is a sufficient classification criterion (this may be the case for classes
produced for evaluating simple queries by example), because such classes may
severely bias the results.

The policy of the user when providing feedback can have a strong impact
on the evaluation of RF. In most cases, the user is expected to mark as
either positive or negative all the images selected by the RF mechanism as
candidates for feedback. This assumes a “stoic” user, which is not very
realistic. The behaviour of RF mechanisms in the presence of more evolved
user policies or of more typical policies (e.g. mark only a few of the images
returned or make some mistakes in marking) should be further studied.

4.2 What to measure

Since user satisfaction is very subjective and experimenting with users is
difficult, other performance measures were defined, relying on the use of
groundtruth databases for the evaluation of retrieval.

The performance measures usually employed consist in the evaluation of
the proportion of “relevant” images in the top N returned by the search
engine (N being the number of images in the target class of the groundtruth
database). The evolution of this measure during successive feedback rounds
is an indication of the speed of convergence to the target ranking. We can
also mention here the use of precision vs. recall after some fixed number of
feedback rounds. Note that these performance measures are appropriate for
the first objective of search with RF, described in Sect. 2.1, and not for the
second, described in Sect. 2.2. To evaluate performance with respect to this
second objective, one should rather measure the evolution of the classification
error or of the rate of false positives during successive feedback rounds (see
[13]).
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5 Directions in retrieval with relevance feed-

back

Among the important issues that deserve more effort in the near future we
can mention:

• The prior information available (see Tab. 1) must be better exploited
by the RF mechanisms. This should produce a general improvement of
the retrieval performance of RF.

• The impact of the characteristics of the data and of the policy of the
user on both the learner and the selector must be addressed. This
should allow an improvement of RF mechanisms used in specific but
maybe frequent settings.

• The scaling of RF to very large image databases is an important issue
that was not extensively studied. Recent approaches, such as [17] and
[18], are promising.
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