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1 Unsupervised Clustering

Clustering (or cluster analysis) aims to organize a collection of data items
into clusters, such that items within a cluster are more “similar” to each other
than they are to items in the other clusters. This notion of similarity can be
expressed in very different ways, according to the purpose of the study, to
domain-specific assumptions and to prior knowledge of the problem.

Clustering is usually performed when no information is available con-
cerning the membership of data items to predefined classes. For this reason,
clustering is traditionally seen as part of unsupervised learning. We neverthe-
less speak here of unsupervised clustering to distinguish it from a more recent
and less common approach that makes use of a small amount of supervision
to “guide” or “adjust” clustering (see section 2).

To support the extensive use of clustering in computer vision, pattern
recognition, information retrieval, data mining, etc., very many different
methods were developed in several communities. Detailed surveys of this
domain can be found in [25], [27] or [26]. In the following, we attempt to
briefly review a few core concepts of cluster analysis and describe categories
of clustering methods that are best represented in the literature. We also take
this opportunity to provide some pointers to more recent work on clustering.
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1.1

A Typology of Methods

We start by mentioning some criteria that provide significant distinctions
between clustering methods and can help selecting appropriate candidate
methods for one’s problem:

Objective of clustering. Many methods aim at finding a single partition
of the collection of items into clusters. However, obtaining a hierarchy
of clusters can provide more flexibility and other methods rather focus
on this. A partition of the data can be obtained from a hierarchy by
cutting the tree of clusters at some level.

Nature of the data items. Most clustering methods were developed for
numerical data, but some can deal with categorical data or with both
numerical and categorical data.

Nature of the available information. Many methods rely on rich rep-
resentations of the data (e.g. vectorial) that let one define prototypes,
data distributions, multidimensional intervals, etc., beside computing
(dis)similarities. Other methods only require the evaluation of pairwise
(dis)similarities between data items; while imposing less restrictions on
the data, these methods usually have a higher computational complex-

ity.

Nature of the clusters. The degree of membership of a data item to
a cluster is either in [0,1] if the clusters are fuzzy or in {0,1} if the
clusters are crisp. For fuzzy clusters, data items can belong to some
degree to several clusters that don’t have hierarchical relations with
each other. This distinction between fuzzy and crisp can concern both
the clustering mechanisms and their results. Crisp clusters can always
be obtained from fuzzy clusters.

Clustering criterion. Clusters can be seen either as distant compact
sets or as dense sets separated by low density regions. Unlike density,
compactness usually has strong implications on the shape of the clus-
ters, so methods that focus on compactness should be distinguished
from methods that focus on the density.

Several taxonomies of clustering methods were suggested in [17], [27] or

[26].

But given the high number and the strong diversity of the existing

clustering methods, it is probably impossible to obtain a categorization that
is both meaningful and complete. By focusing on some of the discriminating
criteria just mentioned we put forward the simplified taxonomy shown below,
inspired by the one suggested in [26].



e Partitional clustering aims to directly obtain a single partition of the
collection of items into clusters. Many of these methods are based on
the iterative optimization of a criterion function reflecting the “agree-
ment” between the data and the partition. Here are some important
categories of partitional clustering methods:

— Methods using the squared error rely on the possibility to repre-
sent each cluster by a prototype and attempt to minimize a cost
function that is the sum over all the data items of the squared
distance between the item and the prototype of the cluster it is
assigned to. In general, the prototypes are the cluster centroids,
as in the popular k-means algorithm [31]. Several solutions were
put forward for cases where a centroid cannot be defined, such as
the k-medoid method [27], where the prototype of a cluster is an
item that is “central” to the cluster, or the k-modes method [24]
that is an extension to categorical data.

By employing the squared error criterion with a Minkowski met-
ric or a Mahalanobis metric, one makes the implicit assumption
that clusters have elliptic shape. The use of multiple prototypes
for each cluster or of more sophisticated distance measures (with
respect to one or several cluster models, see e.g. [12]) can remove
this restriction.

Fuzzy versions of methods based on the squared error were defined,
beginning with the Fuzzy C-Means [7]. When compared to their
crisp counterparts, fuzzy methods are more successful in avoiding
local minima of the cost function and can model situations where
clusters actually overlap. To make the results of clustering less
sensitive to outliers (isolated data items) several fuzzy solutions
were put forward, based on robust statistics [20] or on the use of
a “noise cluster” [13], [30].

Many early methods assumed that the number of clusters was
known prior to clustering; since this is rarely the case, techniques
for finding an “appropriate” number of clusters had to be devised.
This is an important issue for partitional clustering in general. For
methods based on the squared error, the problem is partly solved
by adding a regularization term to the cost function. This is the
case, for example, for the competitive agglomeration method in-
troduced in [19], where clusters compete for membership of data
items and the number of clusters is progressively reduced until an
optimum is reached. With such solutions, instead of the number



of clusters one has to control a regularization parameter, which is
often more convenient. Another solution is to use a cluster valid-
ity index (see section 1.2) to select a posteriori the appropriate
number of clusters.

Density-based methods consider that clusters are dense sets of data
items separated by less dense regions; clusters may have arbitrary
shape and data items can be arbitrarily distributed. Many meth-
ods, such as DBSCAN [16] (further improved in [34]), rely on the
study of the density of items in the neighbourhood of each item.
Some interesting recent work on density-based clustering is using
1-class support vector machines [6].

One can consider within the category of density-based methods
the grid-based solutions, such as DenClue [23] or CLIQUE [1],
mostly developed for spatial data mining. These methods quantize
the space of the data items into a finite number of cells and only
retain for further processing the cells having a high density of
items; isolated data items are thus ignored. Quantization steps
and density thresholds are common parameters for these methods.

Many of the graph-theoretic clustering methods are also related
to density-based clustering. The data items are represented as
nodes in a graph and the dissimilarity between two items is the
“length” of the edge between the corresponding nodes. In several
methods, a cluster is a subgraph that remains connected after the
removal of the longest edges of the graph [25]; for example, in
[40] the minimal spanning tree of the original graph is built and
then the longest edges are deleted. However, some other graph-
theoretic methods rely on the extraction of cliques and are then
more related to squared error methods. Based on graph-theoretic
clustering, there has been significant interest recently in spectral
clustering using kernel methods [33].

Maixture-resolving methods assume that the data items in a cluster
are drawn from one of several distributions (usually Gaussian) and
attempt to estimate the parameters of all these distributions. The
introduction of the expectation maximization (EM) algorithm in
[15] was an important step in solving the parameter estimation
problem. Mixture-resolving methods make rather strong assump-
tions regarding the distribution of the data. The choice of the
number of clusters for these methods is thoroughly studied in more
recent work such as [3] or [10]. In some cases a model for the noise
is explicitely considered.



Most mixture-resolving methods view each cluster as a single sim-
ple distribution and thus strongly constrain the shape of the clus-
ters; this explains why we did not include these methods in the
category of density-based clustering.

e Hierarchical clustering aims to obtain a hierarchy of clusters, called
dendrogram, that shows how the clusters are related to each other.
These methods proceed either by iteratively merging small clusters into
larger ones (agglomerative algorithms, by far the most common) or by
splitting large clusters (divisive algorithms). A partition of the data
items can be obtained by cutting the dendrogram at a desired level.

Agglomerative algorithms need criteria for merging small clusters into
larger ones. Most of the criteria concern the merging of pairs of clusters
(thus producing binary trees) and are variants of the classical single-link
[35], complete-link [28] or minimum-variance [37], [32] criteria. The use
of the single-link criterion can be related to density-based methods but
often produces upsetting effects: clusters that are “linked” by a “line”
of items cannot be separated or most items are individually merged
to one (or a few) cluster(s). The use of the complete-link or of the
minimum-variance criterion relates more to squared error methods.

Many recent hierarchical methods focus on the use of density-like infor-
mation and don’t constrain the shape of the clusters. They often reflect
interest in the database community for dealing with huge datasets and
for speeding-up access. CURE [22] employs multiple representatives
per cluster in order to obtain clusters of arbitrary shape while avoiding
the problems of the single-link criterion. OPTICS [2] does not build
an explicit clustering of the collection of items, but rather an ordered
representation of the data that reflects its clustering structure.

1.2 Cluster Validity Analysis

An unsupervised learning procedure is usually more difficult to assess than
a supervised one. Several questions can be asked regarding the application
of clustering methods:

e Are there clusters in the data?

e Are the identified clusters in agreement with the prior knowledge of the
problem?

e Do the identified clusters fit the data well?



e Are the results obtained by a method better than those obtained by
another?

The first question concerns the cluster tendency of the data and should in
principle be answered before attempting to perform clustering, using specific
statistical tests. Unfortunately, such tests are not always very helpful and
require the formulation of specific test hypotheses.

The other questions concern the analysis of cluster validity and can only
be answered after application of clustering methods to the data. According
to [26], one can distinguish between three types of validation procedures:

e Frternal validation consists in finding an answer to the second question
above and can only be performed when prior knowledge of the problem
is available. The prior knowledge may concern general characteristics
of the clusters (e.g. expected compactness) or relations between specific
items (e.g. items A and B should belong to a same cluster and item C
to a different one). Sometimes this knowledge is confirmatory but not
prescriptive.

e Internal validation concerns the third question above and is based on
an evaluation of the “agreement” between the data and the partition.
In the following we give a few examples of validity indices that were put
forward in the literature for some of the above categories of clustering
methods. Note that the definitions of these internal validity indices
usually make their direct optimization intractable.

In [8] several indices for crisp clustering are evaluated: the modified Hu-
bert’s statistic, related to the alignment between the dissimilarity ma-
trix and the crisp partition matrix, the Davies-Bouldin index, roughly
defined as the ratio between within-cluster scatter and between-cluster
separation, and Dunn’s index with several alternative definitions (some
of which are introduced in [8]) for the diameter of a set and for the dis-
tance between sets.

For fuzzy partitional methods, internal validity indices should take into
account both the data items and the membership degrees resulting
from clustering. The average partition density in [21] is obtained as
the mean ratio between the “sum of central members” (sum of mem-
bership degrees for the items close to the prototype) of each cluster
and the volume of the cluster. The Xie-Beni index put forward in [3§]
is the ratio between the average intra-cluster variation and the mini-
mum distance between cluster centers, and is thus related to the ratio
between intra-cluster and inter-cluster variance.



Among the validity indices suggested for density-based clustering meth-
ods, we mention the two in [18]: the first one measures the variation of
cluster labels in the neighbourhood of data items, the other evaluates
the density on the path between data items.

e Relative comparisons attempt to provide an answer to the fourth ques-
tion above and are usually the main application of the indices defined
for the internal validation. Such comparisons are often employed for
selecting good values for important parameters, such as the number of
clusters.

2 Semi-supervised Clustering

In addition to the similarity information used by unsupervised clustering,
in many cases a small amount of knowledge is available concerning either
pairwise (must-link or cannot-link) constraints between data items or class
labels for some items. Instead of simply using this knowledge for the external
validation of the results of clustering, one can imagine letting it “guide” or
“adjust” the clustering process, i.e. provide a limited form of supervision.
The resulting approach is called semi-supervised clustering. We also consider
that the available knowledge is too far from being representative of a target
classification of the items, so that supervised learning is not possible, even
in a transductive form.

Note that class labels can always be translated into pairwise constraints
for the labeled data items and, reciprocally, by using consistent pairwise
constraints for some items one can obtain groups of items that should belong
to a same cluster.

2.1 A Typology of Methods

Two sources of information are usually available to a semi-supervised clus-
tering method: the similarity measure unsupervised clustering would em-
ploy and some pairwise constraints (must-link or cannot-link). For semi-
supervised clustering to be profitable, these two sources of information should
not completely contradict each other.

Unlike traditional clustering, the semi-supervised approach to clustering
has a short history and few methods were published until now. The main
distinction between these methods concerns the way the two sources of in-
formation are combined (see the taxonomy in [5]): either by adapting the
similarity measure or by modifying the search for appropriate clusters.



o In similarity-adapting methods, an existing clustering algorithm us-
ing some similarity measure is employed, but the similarity measure is
adapted so that the available constraints can be easier satisfied. Sev-
eral similarity measures were employed for similarity-adapting semi-
supervised clustering: the Jensen-Shannon divergence trained with gra-
dient descent [11], the Euclidean distance modified by a shortest-path
algorithm [29] or Mahalanobis distances adjusted by convex optimiza-
tion [39], [9]. Among the clustering algorithms using such adapted sim-
ilarity measures we can mention hierarchical single-link [9] or complete-
link [29] clustering and k-means [39], [9].

e In search-based methods, the clustering algorithm itself is modified so
that user-provided constraints or labels can be used to bias the search
for an appropriate clustering. This can be done in several ways, such
as by performing a transitive closure of the constraints and using them
to initialize clusters [4], by including in the cost function a penalty for
lack of compliance with the specified constraints [14], or by requiring
constraints to be satisfied during cluster assignment in the clustering
process [36].
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