e cham

Java Cand) Treghnology,

Samia Bouzefrane
Associate Professor
CEDRIC —CNAM

samia.bouzefrane@cnam.fr
http://cedric.cnam.fr/~bouzefra

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

Java Card technology: introduction and principles

\ /

2 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cnam
/ Java Card - Introduction

»Need to « programmable » systems
»Need to « evolutive » solution (exceed the ROM)
» Applications :

v Long to develop

> Attemps
1st version: october 1996, startup and actual product in 1998, an industrial
reality since 2000. In 2004, the number Java Cards sold has reached one billion.

\ /

3 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ Stages of industry development

»The smart card and the main stages of development technology:

v’ The pioneers (1975-1985): first thoughts
(the technological basis established)
v'1985-1995: the technology is improved

- Markets and large deployments: CB, GSM
- Limits: need more flexibility

v'1995-2005 : explosion of the market, with new paradigm
- cards based on Scalable Java Card

v'2006: 1.2 billion mobile phones using SIM cards / Java Card
1.65 billion smart cards / Java Card (Sun source site)

v'2008: 90% of SIM cards are Java Card in Europe, America.
6 billion Java Card (According to Sun)

v'2005-?7?7?: the card becomes an element of the network
- SCWS (Smart Card Web Server)
- .Net, Java Card 3.0
4 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

/ The beginning of Java Card technology \

»November 1996, the first proposed use of Java for cards is made by a team of
Schlumberger (Austin)

vJava Card API proposal for programming in Java Card

v Java Card 1.0

» Bull, Gemplus and Schlumberger create the Java Card Forum
v’ the JCF discusses and proposes specifications to Oracle/Sun

»November 1997, publication of the Java Card 2.0
Gemplus demonstrates in October / November CASCADE, the first
chip 32-bit RISC (ARM 7) with flash memory, "an" implementation
of the Java Card 2.0 and DMIs (Direct Method Invocation), etc.

\ /

5 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

\

6

Eveolution to Java Card 2.x

»The version 2.0 of Java Card Specification :

v a runtime environment

v'The ability to write applets with an object-oriented approach

(although the loading format was not specitied)

» March 1999, version 2.1 that includes 3 parts:

v Java Card API Specification
vJava Card Runtime Environment Specification

v'Java Card Virtual Machine Specification

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

An element of Java technology

\ ' Java HolSpol =

7 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ About the license model /1

»The specification is available at:
v’ http://java.sun.com/products/javacard/

> Sell cards (with or without logo) and display compatibility
with technology means being licensed Java Card Technology

» Which provides access to :
v'A reference implementation
v'Following compatibility testing

v'Specific support

\ /

8 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

About the license model / 2

»Java Authorized Licensees of Java Card Technology

v’ the companies listed below licensed Java Card technology from
the Sun MicroSystems. Only Java Card licensees can ship products that
bear the « Java Powered » logo and claim compatibility with the Java Card

Platform specification and Java Card TCK.

v' ARM, Aspects, CCL/ITRL, Fujitsu, Gemplus, SAGEM,

Oberthur Card Systems, Trusted Logic, etc.

Source : http://java.sun.com/products/javacard/licensees.html

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Java Card Forum

» Association of manufacturers of silicon, embedders and customers
v’ Promote Java Card technology
v'Set of technology choices and then offer it the Oracle "Standard".

» JCF : http://www javacardforum.org

\ /

10 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e Cham
/ A Java Card platform

> 1s a smart card
> with a virtual machine

> able to execute applications written in Java

dedicated to smart cards

\

11

» Java Card platforms are standardized by Oracle and Java Card Forum

> Java is the programming language the most used in the application developement

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

12

Java Card = Java + smart Card

Java :

>reliable

= secure

= object-oriented
=hardware-independent

Smart Card:
=secure

< portable

< compact

NEVEo:1 (0

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ A standard smart card

» Application, OS and hardware linked together

» The application is developed only by the owner of the OS

» The application is developed in a low-level language (C, Assembler)
» Development cycle = 5 months

» No true multi-application (data only)

\ /

13 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e Cham
/ A Java Card platform

» Application, OS and hardware are independent

» The application is developed by any Java programmer

» The application is developed in a standard language (high level)
» Development cycle = 2 months

» Multi-application card (code + data)

\ /

14 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e Cham
/ Java Card technology advantages

> easy development

> Interoperability of applets (for use on different platforms)

> Safety (of language, optimization, etc.).

» Multi-application

» dynamicity

» Openness and compatibility (addition and update applications)

> Ability to post-personalization

\ /

15 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

16

Java Card language

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

17

Java Card actors

CUSTOMER'S APPLI APPLI APPLI
APPLICATIONS #1 #2 #3

CARD Javacard APIs Card

MANUFACTURER Javac.ard Virtual Machine
DOMAIN
Operatmg System

Ha rdware

APPLI

#4 EEPROM

Manager

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Java Card characteristics

»Card architectures with very small sizes:
- less than 1K of RAM, 24-28 KB of ROM and 8 to 16 KB NVM
(EEPROM).

> To integrate Java technology into a card, the choices are:
- Reduce language features
- Minimum required to run a Java Card program are:

-24 KB of ROM, EEPROM and 16 KB of 1 KB of RAM.
- Distribute the model of the JVM between “on Card” and “off Card “
»Three parts :
v'Java Card API Specification

vJava Card Runtime Environment Specification

\ v'Java Card Virtual Machine Specification /

18 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -
NS

e cham

19

Supported Types

Supported in Javacard
boolean yes
byte yes
short yes
int yes (optional)
64-bit no
64-bit no
16-bit no
VELELE no
32-bit no

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ Not supported features

»No Threads

»No dynamic loading

» No Garbage Collector until version 2.2)
» no cloning

» no multi-dimension arrays

20

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

21

Features

Supported features

Non Supported features

boolean, byte, short

long, double, float, char, String

One-dimension array

Multi-dimension array

Java package, classes, interface
and exceptions

Threads, serialization

Extension, abstract method,

Overload and object creation
(instantiation)

Dynamic loading of classes

« int » is optional

Security manager

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Key words

» Supported key words

abstract, boolean, break, byte, case, catch, class, const, continue, default, do, else,
extends, false, final,goto null, package, private, protected, public, return, static,
super, switch, this, if, implements, import, instanceof, int, interface, new, null,
package, private, protected, public, return, short, static, super, switch, this, throw,
true, try, void, while.

» Non supported key-words
char, double, float, long, native, synchronized, transient, threadsafe, volatile, finalize

22 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

[

[

cCham

Specific characteristics of Java Card

» Transient objects (APDU, Reset, Select)
» Atomicity

» Sharing

> Exception management on cards

> specific API: Java Card 2.1.x et 2.2

» special methods to install applets, send APDU commands, etc.

\

23

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ Transient Objects

»Definition :
v" objects whose fields are cleared after an event

» Characteristics
v' The value is cleared and not the object itself
v located in RAM

v used for temporary data frequently changed

> Events that reset the temporary objects
v Reset, Select, Deselect.

\ /

24 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

[

[

cCham

»Definition :

v a transaction is atomic if all fields are updated or not at all

» Characteristics

- if a transaction does not end normally (power failure,
card removed, etc.), the data are set to their initial values

- prevent the loss of sensitive data (eg. the balance in the wallet)
- transactional mode can be set or not

- management of atomicity via the API

25

Atomicity / Transaction

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

26

® Applet B requests some
shared methods from Applet A

@ Makes some methods shareable

© Applet A determines whether

Applet B is allowed

Sharing

© Applet A gives Applet B an
access to the shared services

© Applet B can trigger Applet A
shared methods

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

Card Exception

Defined in the applet

Predefined Thrown and caught only by the user

ne Thrown and caught by the CM

Thrown and caught by the CM or the user

27 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

28

Runtime Exception

throw new myException((short) XY) *
catch (myException e) {...} 4/

OR

reason
throw new myException((short) reason) >

Reader

e

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ Exception in Java

> If a method can throw an exception, it must be encapsulated by a
try catch block.

» Example
try
{
operationWhichThrowsAnException();
}
catch (Exception e)
{
}
29 samia.bouzefrane@cnam.fr - CEDRIC ((4) -

e Cham
/ Exception in Java Card

» Exception.throwlt(value)

> Non authorized example

if (erreur) throw new ArithmeticE

\ /

30 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

[

[

cCham

>3 reference packages
vjava.lang
vjavacard.framework

v’javacard.security

> Extension

vJavacardx.crypto

31

Java Card API 2.1

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ javacard.framework package

Class JCSystem

» Methods to manage atomicity:
v'beginTransaction (): begins transaction
v commitTransaction (): saves data of the transaction into the EEPROM
v abortTransaction (): cancels the transaction

» Method to manage transient objects

v isTransient(Object)

v makeTransientXArray(short , byte) X=Boolean , Short , Object
»Methods to manage sharing

» Methods to manage the information system: getVersion ()

\

/

32 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ javacard.framework Package

» Contains the card specificities

» Applet class:
v'Provides a framework for implementation and interaction with the JCRE
v'Apples must extend this class

»APDU class
v'For exchanging data with the terminal

> PIN class

v Manages the secret code

\ /

33 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ javacard.security Package

»>Based on java.security package
> Allows key management and cryptographic functions

» In addition to the conventional algorithms, it also includes the generation
function random number, signature and the calculation of compression functions

\ /

34 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

Off-Card

A
y

35

Java program

Applet development process

1

=Y Optimizer / 3
Converter

“On-Card

‘st - Applet Applet

wl

L #2 #3

Javacard APls

2

applet .

Once the applet is
installed on the card,
it is turning for ever
even if the card is
not powered

Loader

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

[

[

\

cham
CAP File

» The « CAP File » contains:
v'Information on classes
v Executable BC (Byte Code)
v information necessary to linking

v'Information for verification

> It has the format of JAR (Java Archive)

36

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

37

Convertor/Interpretor

Converter

_-‘3‘

ﬁ

‘ Interpreter

Source: Sebastian Hans, Java Card Platform overview, Sun Microsystems Inc., 2008

NS

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Export File

» The « Export » file is used by the convertor
> Information used for linking and verification

» Contains information on APIs
v'"Name of the classes

v'Signature of methods
v Information for linking between packages

> It does not contain BC, it can be published with an applet allowing the applef
Have re-usable objects (shareable)

\ /

38 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

39

class
file

Convertor

Export
file

CAP
file

Export
file

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Convertor

»Supports the following operations:
v'"Compliance verification of the Class File Format
v'Testing compliance aspects of the Java language
v'Initialization of static variables

v'Reference resolution (classes, methods and fields) and placed under
compact to be more effective in a small system

v'Optimize the byte code

v'Allocation and creation of structures that represent the classes in the JVM

40 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

le cham
/ Interpreter

> It provides a runtime environment to run BC of the CAP file. It allows to the
applets loaded in a card run to be run on any platform.

> It performs:
v'The execution of the BC
v'The control of the memory allocation
v'and ensures safety

» The installation of applets is performed thanks to an applet loader that is
distributed between the terminal and the card

\ /

41 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

42

Java Card Architecture

Open Platform 5 |

Issuer Defined API

System Applet

Open Platform o
API Java Card API

Java Card Runtime Environment
Java Card Virtual Machine

Vendor-specific Operating System (Mem, I/O,

Crypto)

Source: Sebastian Hans, Java Card Platform overview, Sun Microsystems Inc., 2008

NS

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ JCRE: life cycle and card session

»In workstation environment, the JVM is a process, it is initialized at the begin and
then stopped at the end of the process. Objects in RAM are lost.

> In order that information is retained from one session to another:

v'In case of a card, the initialization of the JVM is done only once: at the

"beginning of life of the card,"” the objects and data are stored in a non-volatile
memory (EEPROM, Flash, etc.).

v’ At each session with the card:
- Power: the JCRE is "reactivated"

- The card receives and processes APDU commands

- Turn off: the JCRE is "suspended"

\. /

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -
NS

e cham
/ JCRE characteristics

»Persistent objects and temporary

v'Java Card objects are by default persistent

» Atomic operation and transaction

\

44

v'For reasons of efficiency (speed of Read / Write in NVM) and
security (key, intermediate results), applets can create temporary objects

v'The JCVM ensures atomicity of the updates when modifying object values

v'The JCRE provides an API to allow applets group several rewrites and
to provide consistency of these updates (Begin Transaction, Commit, Roll-Back)

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

»Each applet runs in its own space

45

Applet firewall sharing mechanism

v' Applications separated by an applet firewall to prevent intrusion

v'There is a sharing mechanism that allows an applet to access
services offered by an applet or by the JCRE.

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

46

How to write an applet ?

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

\

47

Building Java Card applets

»An application dedicated to a card

v'Code in the card: server application = Java Card Applet

v'Code in the terminal: client application

» An application built in 3 steps

v Writing the server application (applet)
v’ Installation of the Java Card applet

v Writing the client application

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

\

48

»Java Card API 2.1
»>Stages of development of an applet

v' Specify the functions of the applet:

NS

Writing a Java Card applet

- specify the AIDs (Application Identity) of the applet and package
to which the applet belongs

- write the body of applet
- compile (.class)

- convert (.cap)

- load within the card /

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ Development phases of an applet

»Specify the functions of the applet
» Assign an AID to the applet and an AIDs to the package of the applet
»Design programs of the applet

» Define the interface between the applet and the terminal

\ /

49 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

[

\

cham
Applet behaviour

» Application written in Java Card
» Applet on the card
- is selected
- receives messages from the reader
- processes these messages
- returns data to the reader

- is de-selected.

50
NS

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cnam
/ Java Card Runtime Environment

» Loads applets on the card
> Select the applet to activate
» Handles messages (APDUs) received from the reader

» Manages the file system commands and security manager

\ /

51 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e Cham
Life cycle of an applet

. install
Once the applet is loaded on the card, it i -

must be:
- Installed, registered (identified by the J;?
JCRE through its AID) 5

- Selected (as many applets may be select

installed on the card)

deselect

\ /

52 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Specifying the functions of the applet

Example of Echo applet:

Role: Store a data that it receives and returns it to the terminal.

APDU command (xxxx)

APDU response (xxxx)

\ /

53 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

54

Java Card and the APDU Com./Resp

Client App orcsrc\on-card JCRE Card App

I I i
| | 1
i s '

Prepares the g
command Command APDU
procass{ apdu)
£
-
S ik - Response APDU
response \Q

Source: Sebastian Hans, Java Card Platform overview, Sun Microsystems Inc., 2008

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

NS

e cham

APDU command structure

Cialms et [p2 [ic | b

ISO7816.0FFSET CDATA

1507816 .0FFSET_LC

IS07816.0FFSET P2

IS07816 .0FFSET P1

IS07816.0OFFSET_INS
I507816 .OFFSET_CLA

Source: Sebastian Hans, Java Card Platform overview, Sun Microsystems Inc., 2008

55 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -
NS

e cham
AIDs

» Deftine an AID for the package and an AID for the Applet

Package AID
Field Value Length
RID 0xAQ0, 0x00, 0x00, 0x18, 0x50 5 octets
PIX 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x52, 0x41, 0x44, 0x50 | 10 octets
(11 octets au
max)
Applet AID
Field Value Length
RID OxF2, 0x34, 0x12, 0x34, 0x56 5 octets
PIX 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x52, 0x41, 0x44, 0x41 | 10 octets
11 octets au
N\ max)
56 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

NS

e cham

[

\

» An applet must always extend the class javacard.framework.Applet
»The Applet class defines common methods to use to interact with the JCRE.

» These methods should be included in the body of the applet:

57

Applet methods

v'Methods select/deselect : to activate/deactivate the applet

v'"Methods install/uninstall : to install/uninstall the applet
sur la carte
v'Method process : to process APDU commands and return APDU
response

v'Method register : to register the applet within the JCRE.

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

58

Install

Method

(1
LOAD APPLET APDUs

INSTALL APPLET APDU

(4]

0x9000 if np exception thrown

+ installation parameters

CM triggers install()

}

Class myApplet extends Apple
{

public static void install (byte[] buf1, short off1, byte len1) {

installation parameters

régister(}; or register(byte[] buf2, short off2, byte len2) ;

AID

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

59

©

0x9000 if TRUE
or
0x6999 if FALSE

select Method

p
SELECT APPLET APDU .
AlD = myApplet AID
.2
CM triggers select()

w akw - ”-iz-‘ !_ i ! - -__,_. -\G : -='iz.-; -:-E-{::{
raturn TRUE: The applet wants to be selected

or <— The applet does not want to be

return FALSE: } selected

applet with AID = myApplet_AID

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

60

Process Method

CLA INS P1 P2

0x9000 if no\exception thrown

Class myAppIW

public void process (APDU apdu) {
. CLAINS P1 P2P3

}.

Currently selected applet

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

61

0x9000
no exception
thrown

deselect Method

0
DESELECT APPLET APDU

AID = myApplet_AID

8
CM triggers select()

Class myApplet extends et{

ublic boolean deselect () {

deselection

=<— Performs some cleanup before

Currently selected applet

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e Cham
/ Methods to define in the applet

Method summary

public deselect ()
void
Called by the JCRE to inform the currently selected applet that another (or the
same) applet will be selected.

public getShareableInterfaceObject (AID client AID, byte parameter)
Shareable

Called by the JCRE to obtain a sharable interface object from this server
applet on behalf of a request from a client applet.

public install (byte[]l bArray, short bOffset, byte bLength)

static

void The JCRE calls this static method to create an instance of the Applet subclass.

public process (APDU apdu)

abstract

void Called by the JCRE to process an incoming APDU command.

protected | register ()

final void
This method is used by the applet to register this applet instance with the /
JCRE and assign the default AID in the CAD file to the applet instance. /

N\ /
62 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

NS

e Cham
/ Methods to define in the applet

Method summary

protected register (byte[] bArray, short bOffset, byte bLength)
final void
This method is used by the applet to register this applet instance with the
JCRE and to assign the specified AID in the array bArray to the applet
instance.

public select ()
boolean
Called by the JCRE to inform this applet that it has been selected.

protected selectingApplet ()
final boolean

This method is used by the applet process() method to distinguish the
SELECT APDU command that selected this applet from all other SELECT
APDU APDU commands that may relate to file or internal applet state
selection.

63 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

\

Purse Applet: example of code

oublic void PurseApplet (byte [] bArray, short bOffset, byte

{
balance = (short) 0x1000;
register ();
}
public static void install (byte [] bArray, short bOffset,
byte bLength) {
new PurseApplet (bArray, bOffset, bLength);
}

64

public void process (APDU apdu) throws ISOException {

byte [] buffer = apdu.getBuffer();

bLen

Ot

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ An interface between the applet and the terminal

»Define APDU commands :
A Java Card applet must deal with a set of APDU commands :

v'SELECT APDU command: to select an applet on the card

v’ Processing APDUs: commands performed by the process () method

\ /

65 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

66

Interface for the applet of electronic purse

Operations provided by the application:
Read the amount of the purse, debit or credit their account.

These operations are located on the applet using the following
methods: getBalance (), credit (), debit ()
These methods are called directly by the process () method.

Hence: for each operation to define an APDU command
triggers the corresponding method.

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

Commands of the electronic purse

APDU Command CREDIT

APDU Command
CLA |INS |P1 |P2 |Lc Data field Le
0xBO | 0x30 | 0x0 | 0x0 |1 The amount value to be credited NS
APDU Command DEBIT
APDU Command
CLA |INS |P1 | P2 |Lc Data field Le
0xBO | 0x40 | Ox0 | Ox0 |1 The amount value to debit NS
APDU Command GET BALANCE
APDU command
CLA |INS |[P1 |[P2 |Lc Data field Le
0xBO | 0x50 | 0x0 | 0x0 | NS NS 2

67

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cCham
/ Processing APDU commands

1. Extract the APDU buffer
The applet invokes the method getBuffer () to extract the first 5
bytes available in the buffer: CLA, INS, P1, P2, et P3

2. Receive data

If additional data in the command, the applet must invoke the method
setincomingAndReceive() to lead the APDU object to receive
incoming data.

receiveBytes () allows to read the data.

3. Return data

setOutgoing () to get the length of the response (Le)
setOutgoingLength () to inform the CAD of the actual length of
data to be returned.

sendByteLong () to send data from the buffer.

&l. Return the word status. /

68 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -
NS

e cham

69

Java Card 2.2.2 specifications

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Other functionalities of Java Card 2.2

» Logical channels

> Applet and package deletion

> Deletion of objects thanks to garbage collection
»Java Card Remote Method Invocation

»Support for AES and elliptic curves

»Support for contactless

\ /

70 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
API of Java Card 2.2.2

»Package java.lang
Arithmetic oOperations
Operations on arrays
Exception management,
etc.

» Remote Method Invocation
v'Package java.rmi
Remote

RemoteException

v'Package javacard.framework.service

BasicService
CardRemoteObiject
Dispatcher
RemoteService
RMIService
71 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

72

API of Java Card 2.2.2

»Package javacard.framework
AID
APDU
APDUException
Applet
ISO7816
ISOException
JCSystem
MultiSelectable
OwnerPIN
PIN
PINException
Util
etc.

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

»Package javacard.security

73

API of Java Card 2.2.2

AESKey
DESKey
DSAKey
DSAPrivateKey
DSAPublicKey
ECKey
ECPrivateKey
ECPublicKey
HMACKey
KeyBuilder
KoreanSEEDKey
RSAPrivateCrtKey
RSAPrivateKey
RSAPublicKey
etc.

NS

»Package javacardx.crypto
Cipher
KeyEncryption

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham . .
/ Security Algorithms proposed in Java Card 2.2.2

AES: Advanced Encryption Standard (FIPS-197)
e SEED Algorithm Specification : KISA - Korea Information Security Agency

Standard Names for Security and Crypto Packages
e SHA (SHA-1): Secure Hash Algorithm, as defined in Secure Hash Standard,
NIST FIPS 180-1
e SHA-256,SHA-384,SHA-512: Secure Hash Algorithm,as defined in Secure Hash
Standard,NIST FIPS 180-2
* MD5: The Message Digest algorithm RSA-MDY5, as defined by RSA DSI in RFC 132}
e RIPEMD-160: as defined in ISO/IEC 10118-3:1998 Information technology —
Security techniques - Hash-functions - Part 3: Dedicated hash-functions
* DSA: Digital Signature Algorithm, as defined in Digital Signature Standard,
NIST FIPS 186
* DES: The Data Encryption Standard, as defined by NIST in FIPS 46-1 and 46-2
* RSA: The Rivest, Shamir and Adleman Asymmetric Cipher algorithm
e ECDSA: Elliptic Curve Digital Signature Algorithm
e ECDH: Elliptic Curve Diffie-Hellman algorithm
\ AES: Advanced Encryption Standard (AES), as defined by NIST in FIPS 197 /

* HMAC: Keyed-Hashing for Message Authentication, as defined in RFC-2104

74 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -
NS

e cham

[

75

API of Java Card 2.2.2

»Package javacardx.biometry
BioBuilder
BioException
BioTemplate
OwnerBioTemplate
SharedBioTemplate

»Package javacardx.framework.math
BCDUtil
BigNumber
ParityBit

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

/ API of Java Card 2.2.2

Core Packages
. Defines a subset of the java.io package in the standard
java.io .

Java programming language.

Provides classes that are fundamental to the design of the
java.lang Java Card technology subset of the Java programming

language.

Defines the Remote interface which identifies interfaces
java.rmi whose methods can be invoked from card acceptance

device (CAD) client applications.

javacard.framework

Provides a framework of classes and interfaces for
building, communicating with and working with Java
Card technology-based applets.

javacard.framework.service

Provides a service framework of classes and interfaces
that allow a Java Card technology-based applet to be
designed as an aggregation of service components.

javacard.security

Provides classes and interfaces that contain publicly-
available functionality for implementing a security and
cryptography framework on the Java Card platform.

N\

76
NS

/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

L L% S LA

—_

Standard Extensions

javacardx.apdu

Extension package that enables support for ISO7816 specification
defined optional APDU related mechanisms.

javacardx.biometry

Extension package that contains functionality for implementing
a biometric framework on the Java Card platform.

javacardx.crypto

Extension package that contains functionality, which may be
subject to export controls, for implementing a security and
cryptography framework on the Java Card platform.

javacardx.external

Extension package that provides mechanisms to access memory
subsystems which are not directly addressable by the Java Card
runtime environment(Java Card RE) on the Java Card platform.

javacardx.framework.
math

Extension package that contains common utility functions for
BCD math and parity computations.

javacardx.framework.t
Iv

Extension package that contains functionality, for managing
storage for BER TLV formatted data, based on the ASN.1 BER
encoding rules of ISO/IEC 8825-1:2002, as well as parsing and
editing BER TLV formatted data in I/O buffers.

javacardx.framework.
util

Extension package that contains common utility functions for
manipulating arrays of primitive components - byte, short or int.

javacardx.framework.

util.intx

Extension package that contains common utility functions for
using int components.

/

N\

7
NS

7/

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham
/ Conclusion

»Java Card offers the development of applications on cards with Java:
- High level
- With good properties (object-oriented concept).

»The loading infrastructure is defined by Global Platform

»The specifications of Java Card 3.0 has been published in March 2008 by
Oracle

- Classic Edition (extension of version 2.2)

- Connected Edition (Web oriented)

- Integration of TCP / IP stack, servlets, multi-threading, etc.

\ /

78 samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

e cham

[

79

References

1. http://java.sun.com/products/javacard/

2. http://java.sun.com/javacard/3.0/specs.jsp

2. Technology for smart cards: architecture and programmer’s guide, Zhiqun
Chen, Addison Wesley, sept. 2000

3. Understanding Java Card 2.0, Zhiqun Chen & Rinaldo Di Giorgio

4. http://www.javaworld.com/javaworld/jw-03-1998/jw-03-javadev.html

5. http://javacardforum.org

6. Zhiqun Chen, “How to write a Java Card applet: A developer's guide”,
http://www javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html.

7. Pierre Paradinas, Support de cours sur « Java Card », UV de Systemes
Enfouis et Embarqués, Valeur C, Laboratoire CEDRIC, CNAM.
http://deptinfo.cnam.fr/~paradinas/cours/ValC-IntroJavaCard.pdf

8. Global Platform, Card Specification :
http://www.globalplatform.org/specificationform?.asp?id=archived

9. API Java Card : http://java.sun.com/products/javacard/htmldoc

10. Eric Vétillard : http://javacard.vetilles.com/2006/09/17 /hello-world-smart-card/
11. Training by Nemec from Gemalto, SIMAGINE, nov. 2007.

samia.bouzefrane@cnam.fr - CEDRIC (CNAM) -

