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Abstract

Given a connected graph, the Maximum Leaf Spanning Tree Problem (MLSTP) is to 1nd a spanning tree
whose number of leaves (degree-one vertices) is maximum. We propose a branch-and-bound algorithm for
MLSTP, in which an upper bound is obtained by solving a minimum spanning tree problem. We report
computational results for randomly generated graphs and grid graphs with up to 100 vertices.

Scope and purpose

There exist many applications which can be modeled using graphs. Spanning trees in a graph are often
considered since it consists of the minimal set of edges which connect each pair of vertices. The minimum
spanning tree problem is a classical and fundamental problem on graphs. In this paper, we consider the
maximum leaf spanning tree problem which is to 1nd a spanning tree with the maximum number of leaves
(degree-one vertices). This problem has an application in the area of communication networks and circuit
layouts. Since the problem is NP-hard, several approximation algorithms have been considered. The purpose
of the paper is to propose a branch-and-bound algorithm for the problem. We propose an upper bound which
is obtained by solving the minimum spanning tree problem. To the author’s knowledge, this is the 1rst exact
algorithm to the problem.
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1. Introduction

Consider a spanning tree in a given connected graph G. A vertex is called a leaf if it has exactly
one incident edge in the spanning tree. In this paper, we consider the Maximum Leaf Spanning Tree
Problem (MLSTP), which is to 1nd a spanning tree in G, whose number of leaves is maximum.
Several applications of MLSTP can be found in the area of communication networks and circuit
layouts [1,2]. For example, let us consider the case of communication networks where the vertices
correspond to terminals and the aim is to design a tree-like layout in the network. Then, “leaf
terminals” may have lighter work loads than “intermediate terminals” of degree at least two when
intermediate terminals have the work on message routing. Hence, in this case, the solution of MLSTP
could provide a reasonable layout. A related discussion of this model can be found in [3].

MLSTP is known to be NP-hard [4]. Moreover, it is shown that MLSTP is MAX SNP-hard [5]
which implies that there exist �¿ 0 and �¿ 1 such that achieving an approximation ratio (1 + �)
is NP-hard but there is a polynomial time �-approximation algorithm. Lu and Ravi [6,7] developed
3-approximation algorithms and, recently, an improved 2-approximation algorithm was developed by
Solis-Oba [8].

MLSTP is equivalent to the Minimum Connected Dominating Set Problem (MCDSP). Here, a
subset of vertices is called a connected dominating set if its induced subgraph of the subset is
connected and each remaining vertex is adjacent to the subset, and MCDSP is to 1nd a connected
dominating set of maximum size. Hence a set of non-leaves of a spanning tree is a connected
dominating set and, conversely, a set of vertices outside a connected dominating set is a set of
leaves of some spanning tree. Though we know that MCDSP is also NP-hard, the inapproximability
result is diKerent. Guha and Khuller [1] showed that the set cover problem is reduced to MCDSP
by an approximation preserving reduction. For the set cover problem of n elements in the ground
set, Feige [9] showed that achieving an approximation ratio (1 − �) ln n implies NP has nO(log log n)

deterministic algorithms for any �¿ 0.
In this paper, we present a branch-and-bound algorithm for MLSTP. To the author’s knowledge,

this is the 1rst exact algorithm for MLSTP. We use an integer programming formulation, provided in
[10], which will be denoted by (P1). Fernandes and Gouveia [3] gave directed integer programming
formulations by replacing each edge by two arcs with opposite directions: One of their formulations
is closely related to (P1) (see Section 2). The relaxation problem of (P1) is a minimum span-
ning tree problem, and hence an upper bound is easily computable. Computational results of the
branch-and-bound algorithm will be reported for randomly generated graphs and grid graphs with
up to 100 vertices.

The rest of the paper is organized as follows. In Section 2, (P1) is introduced and we make some
observations of the spanning tree problem relaxation of (P1). The branch-and-bound algorithm is
described in Section 3. In Section 4, we report our computational results for randomly generated
graphs and grid graphs. Finally, some concluding remarks are given in Section 5.

2. Formulations and upper bounds

Let G=(V; E) be a connected graph, where V is a set of vertices and E a set of edges. For i∈V ,
let �G(i) denote a set of edges adjacent to i. For a spanning tree T = (V; ET ) in G, the vertex i∈V
with |�T (i)|=1 is called a leaf. We shall assume |�G(i)|¿ 2 for i∈V : Handling degree-one vertices
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(i∈V with |�G(i)| = 1) will be discussed in Section 3.3. For simplicity, �(i) will be used instead
of �G(i) if the graph G is clearly understood. For a spanning tree T = (V; ET ) in G, we de1ne its
incidence vector 
T = (
Te | e∈E) as 
Te =1 if e∈ET ; 
Te =0 otherwise. We denote by STG a set of
all incidence vectors of spanning trees in G.

Let us de1ne a weighted MLSTP. Given a non-negative weight wi for i∈V , the weighed MLSTP
is to 1nd a spanning tree T in G, which maximizes

∑
i∈L(T ) wi where L(T ) is a set of leaves of

T . The unweighted MLSTP is associated with wi = 1 for all i∈V and, in the rest of the paper, we
will call MLSTP as the unweighted MLSTP. A formulation of the weighted MLSTP is provided as
follows:

(P1) maximize
∑
i∈V

wiyi (1)

subject to x∈STG; (2)

x(�(i)) + (|�(i)| − 1)yi6 |�(i)| (i∈V ); (3)

yi ∈{0; 1} (i∈V ); (4)

where x = (xe | e∈E) is a vector of edges and x(�(i)) =
∑

e∈�(i) xe for i∈V . In our formulation
(P1), yi =1 only if the vertex i is a leaf of a spanning tree represented by x∈STG. Hence the 0–1
vector y = (yi | i∈V ) represents a subset of leaves of a spanning tree x∈STG. Since the weighted
MLSTP is a maximization problem and the coeNcients wi (i∈V ) of the objective function (1) are
non-negative, (P1) is a valid formulation of the weighted MLSTP. Formulation (P1) is followed by
Fujie [10].

A relaxation problem of (P1) is obtained by relaxing the 0–1 conditions on the variables yi (i∈V ).
Since (2) and (3) imply yi6 1 for i∈V , we can relax the 0–1 conditions (4) by non-negativity
constraints. Then, for any optimal solution of the relaxation problem, the constraint (3) must hold
with equality. Hence, the relaxation problem is equivalent to the following problem:

(P1) maximize
∑
i∈V

wi
|�(i)| − x(�(i))

|�(i)| − 1

=
∑
i∈V

wi
|�(i)|

|�(i)| − 1
−

∑
e= {i; j}∈E

(
wi

|�(i)| − 1
+

wj
|�(j)| − 1

)
xe

subject to x∈STG:

(P1) is a minimum spanning tree problem with weight wi=(|�(i)| − 1) + wj=(|�(j)| − 1) on edge
e = {i; j}∈E, and can be solved eNciently (see e.g. [11]). Note that (P1) is equivalent to the
Lagrangian relaxation of (P1) with respect to the constraint (3) since this Lagrangian relaxation
satis1es the Integral Property [12] (see [10]). We also note that (P1) works well as a relaxation
problem since we have assumed |�(i)|¿ 2 (i∈V ).
Here, we make some observations of relaxation (P1). Firstly, (P1) remains a valid formulation of

the weighted MLSTP even if the constraints (3) are replaced by

x(�(i)) + (|V | − 2)yi6 |V | − 1 (i∈V ): (5)
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Fig. 1. A 3-regular graph and a spanning tree (black vertex is a leaf).

One of the directed integer programming formulations of Fernandes and Gouveia [3] essentially
adopts (5) to relate variables of arcs and vertices. On the other hand, if we use (5) in (P1), the
maximum value of (P1) for MLSTP is equal to |V | − 1, which is a trivial upper bound. Secondly,
let TR be an optimal spanning tree of (P1). Then we have

∑
i∈L(TR) wi6 v(P1)6 v(P1), where v(·)

denotes the optimal solution value of problem (·). Hence, the relaxation gap v(P1)− v(P1) satis1es

v(P1)− v(P1)6 v(P1)−
∑

i∈L(TR)
wi =

∑
i∈V ′

wi
|�(i)| − |�TR(i)|

|�(i)| − 1
;

where V ′= {i∈V | 1¡ |�TR(i)|¡ |�(i)|}. This observation implies that, for example, if any non-leaf
i �∈L is full degree (i.e. |�TR(i)|= |�G(i)|), TR is optimal for the weighted MLSTP. Lastly, for MLSTP
for an r-regular graph G (i.e. a graph G satisfying |�G(i)|= r for i∈V ), an explicit upper bound is
obtained. Namely, for any spanning tree x∈STG, we have

∑
i∈V

r − x(�(i))
r − 1

=
rn
r − 1

−
∑

i∈V x(�(i))
r − 1

=
rn
r − 1

− 2(n− 1)
r − 1

=
(r − 2)n+ 2

r − 1
:

For 3-regular graphs, the upper bound is n=2+1, while Storer [2] gave a lower bound of n=4+2. The
upper bound is tight: In Fig. 1, we show the tight example. The number of vertices in the graph is

n=1 + 3 + 3(2 + · · ·+ 2h) + 2 · 3 · 2h+1

= 4 + 3 · (2h+1 − 2) + 2 · 3 · 2h+1 = 9 · 2h+1 − 2;

while the number of leaves of the spanning tree is

3 · 2h + 3 · 2h+1 = 9 · 2h = n=2 + 1:

For further results on lower bounds, see [13].

3. Algorithm

In this section, we describe a branch-and-bound algorithm based on the formulation (P1).
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3.1. Solving subproblems

Recall our formulation (P1) of the weighted MLSTP. In this formulation, the 0–1 vector y rep-
resents a subset of leaves of the corresponding spanning tree x∈STG. Hence, we can restate the
weighted MLSTP as: “Find a subset of leaves (leaf subset) of some spanning tree of the maximum
weight”. This restatement will help us to formulate subproblems. Let us denote a subproblem by
MLSTP(S1; S0; F), where (S1; S0; F) is a partition of V and any vertex in S1 must be contained in any
leaf subset, none of vertex in S0 must be contained in any leaf subset, and F = V\(S1 ∪ S0) is a set
of free vertices. The root problem is MLSTP(∅; ∅; V ). It can be easily shown that MLSTP(S1; S0; F)
has a feasible solution if and only if G\S1 is connected and, for i∈ S1, there is an edge that con-
nects i and some vertex in V\S1 [8]. Hence, checking feasibility of MLSTP(S1; S0; F) can be done
eNciently.

The subproblem MLSTP(S1; S0; F) is formulated as follows:

(P(S1; S0; F)) maximize
∑
i∈F

wiyi + w(S1)

subject to x∈STG;

x(�(i)) + (|�(i)| − 1)yi6 |�(i)| (i∈F);
x(�(i))6 1 (i∈ S1);
yi ∈{0; 1} (i∈F);

where w(S1) =
∑

i∈S1 wi. By relaxing the 0–1 constraints, we have a relaxation problem

(P(S1; S0; F)) maximize
∑
i∈F

wi
|�(i)|

|�(i)| − 1
−

∑
e∈E

dexe + w(S1)

subject to x∈STG;

x(�(i))6 1 (i∈ S1);

where

de =




wi
|�(i)| − 1

+
wj

|�(j)| − 1
for e = {i; j} with i; j∈F;

wi
|�(i)| − 1

for e = {i; j} with i∈F; j �∈ F;

0 otherwise:

(P(S1; S0; F)) is solved by 1nding a minimum spanning tree in G\S1 with costs de and then, for
i∈ S1, connecting i and a vertex j∈V\S1 with the minimum cost d{i; j}.
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Finally, we note that the problem

(P′(S1; S0; F)) maximize
∑
i∈S1

(W + 1)wiyi +
∑
i∈F

wiyi −Ww(S1)

subject to x∈STG;

x(�(i)) + (|�(i)| − 1)yi6 |�(i)| (i∈ S1 ∪ F);
yi ∈{0; 1} (i∈ S1 ∪ F)

is also a valid formulation of MLSTP(S1; S0; F) for large W¿0 since yi = 1 (i∈ S1) holds for any
optimal solution. Though its relaxation problem (P′(S1; S0; F)) is a single minimum spanning tree
problem, the algorithm for (P′(S1; S0; F)) behaves essentially the same as the one for (P(S1; S0; F)).

3.2. Statement of algorithm

We are now ready to state the branch-and-bound algorithm. For ease of the description, we present
a branch-and-bound algorithm for the unweighed MLSTP: Our computational experiments will be
done for the unweighted MLSTP and it is easy to extend the branch-and-bound algorithm to the
weighted case. For simplicity, the subproblem MLSTP(S1; S0; F) is denoted by (S1; S0; F).

Algorithm branch and bound

1. (Initialization) Run the following heuristics:
BFS: For v∈V , apply the breadth 1rst search algorithm rooted at v in the input graph G, to
make a spanning tree in G.
Lu–Ravi: Apply the 3-approximation algorithm of Lu and Ravi [7].
Solis-Oba: Apply the 2-approximation algorithm of Solis-Oba [8].
Let LB be the best solution value (the number of leaves) among the three heuristics. If LB=|V |−1
then stop. We have had an optimal solution. Otherwise, set L := {(∅; ∅; V )}.

2. (Subproblem selection) If L=∅, stop. Otherwise, choose (S1; S0; F)∈L in the depth-1rst fashion
and L := L\{(S1; S0; F)}. If |S1|+ |F |¡LB then go to 2.

3. (Checking feasibility) Check whether there is a spanning tree in G, of which S1 is a subset of
leaves. If not, go to 2.

4. (Updating a lower bound) If |S1|¿LB then, for v∈ S0∪F , run the breadth 1rst search algorithm
rooted at v in the graph G\S1, to make a spanning tree in G, of which S1 is a subset of leaves.
Let LB be the consequent improved solution value.

5. (Upper bounding) Solve (P(S1; S0; F)) to compute an upper bound UB. If �UB�6LB, go to 2,
where �UB� is the greatest integer not greater than UB.

6. (Subproblem selection) Choose v=argmax{|�G(u)| | u∈F}. Let L := L ∪ {(G; S1; PS0; PF);
(G; PS1; S0; PF)}, where PS1 = S1\{v}, PS0 = S0\{v} and PF = F\{v}. Go to 2.

Note that Lu–Ravi runs in almost linear time [7] and Solis-Oba runs in linear time [8], while
the computational time of BFS is O(|V |(|E| + |V |)). In the approximation algorithms Lu–Ravi
and Solis-Oba, a forest is constructed to obtain the performance ratio, that is, it is proved that any
spanning tree containing the forest achieves the ratio. Hence, we construct a spanning tree containing
the forest heuristically.
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3.3. Handling degree-one vertices

In this subsection, we provide a reformulation of (P1) in the case that an input graph G= (V; E)
has some degree-one vertices. To this end, let

Ŝ1 = {i∈V | |�(i)|= 1};
Ŝ0 = {i∈V\Ŝ1 | ∃j∈ Ŝ1 s:t: {i; j}∈E};
F̂ = V\(Ŝ1 ∪ Ŝ0):

Since then y1 =1 (i∈ Ŝ1) and yi=0 (i∈ Ŝ0) hold for any feasible solution y of (P1), we can de1ne
the problem MLSTP(Ŝ1; Ŝ0;F̂) as a root problem.

4. Computational experiments

Our computational experiments will be done for MLSTP, that is, we will assume wi = 1 for all
i∈V .

We implemented the branch-and-bound algorithm using PUBB (parallelization utility for branch-
and-bound algorithms) developed by Shinano et al. [14] written in C++. Though PUBB is de-
signed for a skeleton of parallel branch-and-bound algorithms, it can also be used for sequential
branch-and-bound algorithms. At the user level, we have only to design components, such as lower
and upper bounding and branching, to run the sequential and/or the parallel branch-and-bound al-
gorithm. For a detailed description of PUBB, see [14]. In this section, we report results for the
sequential branch-and-bound algorithm only. The components of PUBB are written in C and all
problems were solved on a Pentium II 300 MHz.

4.1. Random graphs

The purpose of this subsection is to examine the performance of the upper and lower bounds and
the limit of the algorithm for randomly generated graphs. Given n and p, we generated a graph of
n vertices with density p, where p is the probability that a pair of vertices appears as an edge. We
repeated the generation until the graph becomes connected. For each pair of n and p, we generated
ten problem instances.

We 1rst report our results of heuristics (see “1. Initialization” in Section 3.2). A part of our results
is shown in Table 1. In the table, “Leaves” means the average number of leaves and “Time” the
average time in seconds. As the table shows, in our implementation, BFS is best for graphs with
p¿ 0:3 and Lu–Ravi is best for sparse graphs with p6 0:2. This tendency remains true for other
graphs.

Table 2 displays a result of the branch-and-bound algorithm. In the table, ‘LB at root’ denotes the
mean solution value of the heuristics, ‘UB at root’ the mean upper bound of the input graphs, and
‘OPT’ the mean optimal solution value. Note that the number of generated subproblems is equal to 1
implies that the optimal solution is obtained at root (without any branching). We omitted results for
dense graphs of p= 0:8 and 0.9, since most of such dense graphs have stars and optimal solutions
are obtained at root. Table 2 shows that neither the upper bound nor the lower bound is very poor.
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Table 1
Comparison of heuristics for randomly generated graphs

Graph BFS Lu–Ravi Solis-Oba

n p Leaves Time Leaves Time Leaves Time

50 0.1 33.8 0.00 35.4 0.00 34.0 0.00
0.2 40.4 0.00 40.8 0.00 40.0 0.00
0.3 44.0 0.00 43.3 0.00 43.2 0.00
0.4 45.1 0.00 44.4 0.00 44.3 0.00
0.5 46.4 0.00 45.8 0.00 45.5 0.00
0.6 47.1 0.01 46.3 0.00 46.1 0.00
0.7 47.8 0.01 47.0 0.00 47.0 0.00

100 0.1 78.3 0.01 82.0 0.00 77.7 0.00
0.2 88.4 0.02 88.8 0.00 87.2 0.00
0.3 92.4 0.03 91.8 0.00 90.9 0.01
0.4 94.3 0.04 93.2 0.00 93.1 0.01
0.5 95.8 0.04 94.7 0.00 94.8 0.01
0.6 96.3 0.05 95.9 0.00 95.5 0.01
0.7 97.1 0.06 96.3 0.00 96.2 0.01

However, they are unstable so that the number of generated subproblems and the computing time are
unstable. Hence, we should improve the upper and lower bounds to solve large problem instances.
We also note that the optimal solution values are large and close to the trivial upper bound n−1. In
fact, Kleitman and West [13] showed that for every connected graph with n vertices and minimum
degree at least k has a spanning tree whose number of leaves is at least (1− b ln k=k)n for large k,
where b is a constant exceeding 2.5.

4.2. Grid graphs

In this subsection, we consider grid graphs as an example of graphs with small degrees. The
motivation comes from the large optimal solution values for randomly generated graphs.

For positive integers m and n, the grid graph Gm×n = (Vm×n; Em×n) is de1ned as follows:

Vm×n = {(i; j) | 16 i6m; 16 j6 n};
Em×n= {{(i; j); (i; j + 1)} | 16 i6m; 16 j6 n− 1}

∪{{(i; j); (i + 1; j)} | 16 i6m− 1; 16 j6 n}:
For m¿ 3 and n¿ 3, Gm×n has vertices of degree 4, 3 or 2. The number of degree-4 vertices is
(m− 2)(n− 2), that of degree-3 vertices is 2(m− 2) + 2(n− 2), and that of degree-2 vertices is 4.
Fig. 2 shows the grid graph G4×5.

For grid graphs, the upper bound is explicitly calculated for MLSTP.

Lemma 1. For the grid graph Gm×n, an optimal solution value of (P1) with wi =1 for all i∈V is
equal to 2mn=3. Hence �2mn=3� is a valid upper bound for MLSTP.
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Table 2
Computational results for randomly generated graphs

Graph LB at UB at OPT Generated subproblems Time (s)
root root

n p Min. Mean Max. Min. Mean Max.

30 0.1 18.8 21.7 19.7 63 3144.0 22623 0.00 0.25 1.79
0.2 22.6 25.8 23.9 257 1743.8 6875 0.04 0.25 1.06
0.3 24.7 27.1 25.5 429 2089.2 5219 0.08 0.39 1.00
0.4 26.0 27.7 26.6 43 960.8 2747 0.01 0.22 0.63
0.5 27.0 28.0 27.0 191 346.2 515 0.05 0.10 0.14
0.6 27.6 28.0 27.9 1 121.4 673 0.00 0.04 0.20
0.7 28.0 28.0 28.0 1 1.0 1 0.00 0.01 0.01

40 0.1 26.9 31.9 29.0 1435 136451.6 937805 0.24 15.71 107.86
0.2 32.6 35.9 33.6 2671 20388.6 63771 0.66 5.21 16.34
0.3 34.0 37.0 35.4 1079 9614.4 20265 0.38 3.15 6.70
0.4 35.7 37.8 36.5 121 3198.6 7155 0.04 1.24 2.80
0.5 36.3 38.0 37.0 583 782.8 969 0.30 0.40 0.47
0.6 37.4 38.0 37.5 1 608.0 1245 0.01 0.37 0.77
0.7 38.0 38.0 38.0 1 1.0 1 0.01 0.01 0.02

50 0.1 35.7 42.1 38.4 39625 3056245.4 13092423 10.35 480.31 1986.58
0.2 41.1 45.9 43.4 6545 216824.8 484295 2.60 84.76 188.21
0.3 44.1 47.0 45.2 861 58893.0 203635 0.42 30.92 101.32
0.4 45.1 47.8 46.0 9349 16797.4 22123 6.02 11.32 15.62
0.5 46.5 48.0 47.0 779 1561.4 4167 0.64 1.30 3.28
0.6 47.1 48.0 47.1 1 1846.8 2159 0.01 1.73 2.12
0.7 47.8 48.0 48.0 1 57.4 287 0.01 0.07 0.27

60 0.2 50.7 56.0 53.3 25241 685353.6 1375439 14.87 396.83 797.50
0.3 53.4 57.0 54.9 98553 344504.2 2060863 75.06 259.39 1494.46
0.4 55.0 57.7 56.0 16169 31173.0 44437 15.23 31.24 46.15
0.5 56.1 58.0 57.0 1219 2732.0 6149 1.41 3.22 7.08
0.6 56.9 58.0 57.0 2821 3025.6 3457 3.78 4.07 4.54
0.7 57.7 58.0 57.9 1 386.2 3167 0.02 0.61 4.93

70 0.3 63.0 67.0 65.0 213273 431577.0 801159 229.53 461.60 849.01
0.4 64.8 67.9 66.0 39385 55979.4 75377 50.61 74.88 101.51
0.5 66.0 68.0 66.9 2581 12929.0 75193 4.05 19.79 111.94
0.6 67.0 68.0 67.1 1 3835.2 4711 0.04 7.12 8.50
0.7 67.6 68.0 67.9 1 614.4 4313 0.04 1.32 9.21

80 0.4 74.8 77.5 75.9 71815 279422.0 1936327 123.40 461.91 3122.17
0.5 76.1 78.0 76.7 2915 43423.8 134629 6.02 89.23 276.25
0.6 76.7 78.0 77.0 5257 5640.0 5997 12.85 13.73 14.50
0.7 77.4 78.0 77.8 1 1660.2 5927 0.05 4.66 16.87

90 0.5 85.8 88.0 86.4 4851 121648.8 201179 12.62 319.33 524.27
0.6 86.7 88.0 87.0 7093 7272.8 7553 21.64 22.21 23.03
0.7 87.0 88.0 87.4 181 4919.6 7709 0.40 16.88 26.50

100 0.5 95.8 98.0 96.3 4809 205794.0 276839 16.25 671.27 918.24
0.6 96.4 98.0 97.0 8843 9186.0 9541 33.46 35.65 36.97
0.7 97.1 98.0 97.3 1 6638.6 9411 0.12 29.79 43.52
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Fig. 2. Grid graph G4×5.

Proof. Recall that, in the minimum spanning tree problem (P1), the coeNcient (cost) of an edge
(i; j) is equal to 1=(|�(i)| − 1) + 1=(|�(j)| − 1). Hence a minimum spanning tree is constructed by
the following steps:

(i) Find a spanning tree in the subgraph induced by the vertices of degree 4. The number of edges
in the spanning tree is (m− 2)(n− 2)− 1 and each of the edge costs is 1

3 +
1
3 =

2
3 .

(ii) For any vertex of degree 3, connect its incident edge to the current spanning tree. The number
of vertices is 2(m− 2) + 2(n− 2) and each of the new edge costs is 1

3 +
1
2 =

5
6 .

(iii) For any vertex of degree 2, connect an edge to the current spanning tree. The number of
vertices is 4 and each of the new edge costs is 1

2 +
1
1 =

3
2 .

Therefore, the overall cost is

∑
i∈V

|�(i)|
|�(i)| − 1

−
∑

e= (i; j)∈E

(
1

|�(i)| − 1
+

1
|�(j)| − 1

)
xe

=
{
(m− 2)(n− 2) · 4

3
+ (2(m− 2) + 2(n− 2)) · 3

2
+ 4 · 2

}

−
{
((m− 2)(n− 2)− 1) · 2

3
+ (2(m− 2) + 2(n− 2)) · 5

6
+ 4 · 3

2

}

=
2mn
3

and completes a proof.

For a lower bound, we have the following lemma.

Lemma 2. For m; n¿ 4, Gm×n has a spanning tree whose number of leaves is equal to

mn−min
{
2m+ (n− 4) +

⌊
n− 4
3

⌋
(m− 2); 2n+ (m− 4) +

⌊
m− 4
3

⌋
(n− 2)

}
: (6)
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Fig. 3. Constructing T1 and T2 for the grid graph G7×13 (black vertex is a leaf).

Proof. Let T1 be a spanning tree whose non-leaves are listed below:

(1; 2); (2; 2); : : : ; (m; 2);

(1; n− 1); (2; n− 1); : : : ; (m; n− 1);

(2; 3); (2; 4); : : : ; (2; n− 2);

(i; 3k + 2) for i = 3; 4; : : : ; m; k = 1; 2; : : : ;
⌊
n− 4
3

⌋
:

Let T2 be a spanning tree whose non-leaves are listed below:

(2; 1); (2; 2); : : : ; (2; n);

(m− 1; 1); (m− 1; 2); : : : ; (m− 1; n);

(3; 2); (4; 2); : : : ; (m− 2; 2);

(3‘ + 2; j) for ‘ = 1; 2; : : : ;
⌊
m− 4
3

⌋
; j = 3; 4; : : : ; n:

Fig. 3 displays an example for G7×13. It is not hard to see that T1 and T2 are true spanning trees in
Gm×n. Moreover, the number of non-leaves in T1 is equal to

2m+ (n− 4) +
⌊
n− 4
3

⌋
(m− 2)

and the number of non-leaves in T2 is equal to

2n+ (m− 4) +
⌊
m− 4
3

⌋
(n− 2):

Hence the assertion is proved.

Roughly speaking, the upper and lower bounds in Lemmas 1 and 2 are around 2mn=3. However,
neither of them necessarily attains an optimal solution value. In Fig. 4, the left spanning tree is T1
in the proof of Lemma 2 and the right is an optimal spanning tree for G7×7. The upper bound is
32 and the lower bound is 27, while the optimal solution value is 29.



1942 T. Fujie / Computers & Operations Research 30 (2003) 1931–1944

Fig. 4. Grid graph G7×7 and spanning trees (black vertex is a leaf).

Table 3
Computational results for grid graphs

Graph LB at root UB at OPT Generated Time
root subproblems (s)

m n BFS Lu–Ravi Solis-Oba Eq. (6)

3 3 6 6 6 − 6 6 1 0.0
3 4 7 8 8 − 8 8 1 0.0
3 5 9 10 10 − 10 10 1 0.0
3 6 11 12 12 − 12 12 1 0.0
3 7 13 14 14 − 14 14 1 0.0
3 8 15 16 16 − 16 16 1 0.0
3 9 17 18 18 − 18 18 1 0.0
4 4 8 8 8 8 10 9 125 0.0
4 5 10 10 10 11 13 11 311 0.0
4 6 12 14 14 14 16 14 197 0.0
4 7 14 15 16 15 18 16 1473 0.2
4 8 16 18 18 18 21 18 10011 1.2
4 9 18 19 21 21 24 21 5545 0.8
5 5 12 13 13 14 16 14 1545 0.2
5 6 14 17 16 18 20 18 499 0.1
5 7 16 19 18 20 23 20 26383 3.6
5 8 18 21 20 23 26 23 100233 16.6
5 9 20 25 23 27 30 27 34575 6.9
6 6 16 21 19 22 24 22 1327 0.2
6 7 18 24 22 26 28 26 3583 0.7
6 8 20 27 25 30 32 30 10143 2.2
6 9 22 30 28 34 36 34 27061 7.0
7 7 20 27 26 27 32 29 852263 188.5
7 8 22 31 30 33 37 33 4039051 1077.7
7 9 24 35 34 39 42 39 544047 173.0
8 8 24 35 34 38 42 38 61726533 20260.2
8 9 26 40 39 45 48 45 2129061 810.5
9 9 28 45 43 51 54 51 5475435 2597.9

Table 3 displays a computational result for grid graphs, where ‘LB at root’ is the lower bound
given in Lemma 2. For m= 3, the breadth 1rst search heuristic is applied. As the table shows, the
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upper bound is not tight while the lower bound attains the optimum for many graphs. The table also
shows that, for the branch-and-bound algorithm, the upper bound is crucial to the computing time.

Finally, we remark that MLSTP is NP-hard even if the graph G is planar with no degree exceeding
4 [4]. On the other hand, to the author’s knowledge, it is not known the time complexity of MLSTP
for grid graphs, which are still planar with no degree exceeding 4.

5. Concluding remarks

In this paper, we considered MLSTP and its generalization with non-negative weights on vertices.
In fact, it can be generalized with weights on edges:

maximize
∑
i∈V

wiyi +
∑
e∈E

Wexe

subject to (2); (3); (4);

since its relaxation problem is still a minimum spanning tree problem. Note that We (e∈E) are not
necessarily restricted to be non-negative. Therefore, for the example of the tree-like layout design
introduced in Section 1, we can deal with the layout cost.
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